Personal water craft

A personal water craft (PWC), also called water scooter, is a recreational watercraft that the rider rides or stands on, rather than inside of, as in a boat.

These have an inboard engine driving a pump jet that has a screw-shaped impeller to create thrust for propulsion and steering. They are often referred by the trademarked brand names 'Jet Ski', 'WaveRunner', or 'Sea-Doo'.[1] There are a wide variety of "jet boats" many of which exceed 30-40' in length. The Coast Guard defines a personal watercraft, amongst other criteria, as a jet drive boat less than 13' in length, in order to exclude from that definition, more conventional sized jet boats.[2] Most are designed for two or three people, though four-passenger models exist.

Contents

History

The invention of both major types of personal water craft, the stand-up and sit-down models, is credited to Clayton Jacobson II of Lake Havasu City, Arizona, USA, originally a motocross enthusiast.[3][4][5] Jacobson's idea was designed in the mid-1960s, powered by an internal pump-jet rather than an outboard motor,[5] made of all aluminum, and had a fixed, upright handle. Jacobson eventually quit his job in banking to devote himself to developing the idea, and had a working prototype by 1965. It differed slightly from modern personal watercraft but had definite similarities. He completed a second prototype a year later made of fiberglass.[6]

The first PWC to hit the market was designed by Bombardier in the late 1960s. Bombardier's original designs were not very popular and Bombardier left the business before 1970. Stand-up PWCs first appeared on the US market in 1973 and were produced by Kawasaki. These were mass produced boats to be used by only one rider. While they are still produced today, the more popular design, is the sit down variety of PWC. These sit down models have been produced by Kawasaki (Jetski), Bombardier (Sea Doo), Yamaha (WaveRunner), Honda (AquaTrax), Polaris (Sealion) and Arctic Cat (Tigershark). As of 2010, the major manufacturers of PWCs were Kawasaki, Bombardier and Yamaha. Both Yamaha and Kawasaki continue to sell stand up models but it is a small percentage of the overall market.

An innovation in personal water crafts is the Dolphin Boat produced by Innespace Productions which is a fully submersible personal watercraft. The Innespace Seabreacher seats 2 people and can move in 3 dimensions, being submersible up to 5 feet, and jumping up to 10 feet above the surface of the water.

Recreational uses

Surfers use PWCs to get to waves and get up to speed with them; this is known as tow-in surfing. PWCs can also be used for towing water skiers on flat water. There are a number of places in which PWC operators will actually use their watercraft for jumping surf. Most frequently these are stand up models.

Modern PWCs include a lanyard attached to a dead man's switch, to turn off the vessel if the operator falls off, provided the lanyard is attached to the operator.

The world record for the longest distance traveled on a PWC, set by John Moffatt in 2007, is 11,525 miles.[7]

Lake Havasu, Arizona, is used for PWC riders and racers alike; the site has hosted the IJSBA World Finals for PWC racing each October since 1982. The Wet Dog Race is a 2000-mile Alaskan PWC race with a million dollar purse scheduled to run in 2011.

Non-recreational uses

PWCs are small, fast, easily handled, fairly easy to use, affordable, and their propulsion systems do not have external propellers, making them safer for swimmers and wildlife. For these reasons, they are preferred for non-recreational use over small motorboats.

Lifeguards use PWCs equipped with rescue platforms to rescue water users who get into difficulties and carry them back to shore. Rescuers use PWCs to pick up flood survivors.

PWCs are used for law enforcement. Due to their speed and excellent maneuverability, police and rangers use them to enforce laws on lakes and rivers.

A PWC combined with a wash-reduction system, carrying waterproof loudspeaker equipment and GPS for instructions and distance measurement, has purportedly been used by assistant coaches for rowing sports on the River Tyne.

PWCs are used by the U.S. Navy as surface targets. Equipped with GPS, electronic compass, radar reflector, and a radio modem, the PWC is fully remotable with a two-way link. Its small shipboard footprint allows it to be stored and deployed from the smallest of vessels, and it has been used for target practice for everything from 5" to small arms.

PWCs are banned from many state parks throughout the U.S. including Kachemak Bay State Park in Alaska.

Emissions

The PWC industry reached an agreement with the Coast Guard in 1999 (see fall, 1999 BSAC Minutes) whereby a PWC cannot exceed 65 mph pursuant to a specified test protocol.

Before 1990, PWC emissions were unregulated in the United States. Many were powered by two-stroke cycle engines, which are smaller and lighter than four-stroke cycle engines but more polluting. Simple two-stroke engines are lubricated on a "total loss" method, mixing lubricating oil with their fuel; they are estimated to create exhaust in excess of 25% of their fuel and oil unburned in addition to the products of incomplete and complete combustion.

The 1990 amendments to the Clean Air Act allowed the U.S. Environmental Protection Agency to begin regulating all recreational marine engines including PWC as well as other off-road internal combustion engines. The agency began a dialogue with manufacturers in 1991, resulting in regulations that were enacted in 1996. These regulations, set to phase in between 1998 and 2006, are averaging standards, allowing manufacturers to offset more-polluting engines in their range by selling other engines that exceed the standard. California and subsequently New York have adopted more stringent regulations than the federal standard. Subsequent to 2004 when the maximum emission reductions required by California became effective, the substantial majority of new PWC sold throughout the United States have met the lower emissions standards established by California.

To meet these regulations, manufacturers have adopted a variety of improvements, including increased use of four-stroke engines, the use of direct injection for two-strokes, and the use of catalytic converters and other pollution-curbing measures that overall have reduced emissions by approximately 75% compared to pre-regulation models.

In some areas, such as Lake Tahoe, All outboard motors and PWCs are permitted if they meet the 2006 EPA regulations. A number of pre-2006 model year PWC meet that EPA standard.

Environmental groups such as the Surfrider Foundation and the Bluewater Network claim that more rapid progress could be made and the dimishing numbers of pre-1998 watercraft in use continue to emit substantial pollution.

Against this, industry groups such as the Personal Watercraft Industry Association point out that environmental groups continue to cite pollution levels of pre-regulation watercraft and ignore the improvements made to newer models; and furthermore, that personal watercraft are unfairly singled out when they are no more polluting than other powered boats.

Hazards

Apart from the obvious hazards of collisions and mechanical breakdowns common to all vehicles, operating a PWC can involve a risk of orifice injuries.[8][9] These injuries are typical of the kinds of injuries that waterskiers experience by virtue of falling into the water at speed.[10] Such injuries can occur from simply falling in the water at speed or they can occur from the output end of the pump jet. A rider who falls (or is ejected) off the back can land directly in the path of the PWC's high-pressure jet of water. Unless a rider is appropriately dressed in garments made out of a strong, thick substance like neoprene (as is commonly found in wetsuits), the jet may penetrate any orifice it reaches. All of the major PWC manufacturers warn about this risk and recommend that passengers wear wet suit bottoms or equivalent protection. The American Waterski Racing Association recommends that all of their racers wear wet suit bottoms for this same reason. Such an injury can result in permanent disability or death.[11][12] For example, in 2006, the California Court of Appeal (First District) upheld a US$3.7 million Napa County jury verdict against Polaris Industries arising out of one such incident (which had devastating effects on the victim's lower abdomen).[13] Much like the incidence rate with waterskiing, the reported rate of this kind of injury is very low. The NTSB studied the files related to over 1800 PWC accidents, over a period of almost 2 years, and did not discover any such accidents.[14] This is largely due to the fact that in order to received this type of injury, the passenger must fall directly off to the rear of the craft and hit the water at a specific angle, before such an injury can occur. It is also likely that many other kinds of materials besides wet suit bottoms will provide sufficient protection.

While also rare, spinal injuries can occur while surf jumping and, potentially, wake jumping.[15] The PWC manufacturers owner's manuals all include warnings regarding jumping at excessive heights, or operating a PWC if there is a prior history of back injury. The current on-product labels say "Jumping wakes or waves can increase the risk of spinal/backbone injuries (paralysis)".[16] The current Kawasaki owner's manual provides: "Slow down before crossing waves. Do not ride if you have a back condition. High speed operation in choppy or rough water may cause back injuries."[17]

Another rare, but unique injury risk with jet boats, is being sucked into the intake side of the pump jet. Current PWC products contain on-product warnings that state: "Keep away from Intake Grate while the engine is on. Items such as long hair, loose clothing, or PFD straps can become entangled in moving parts and result in severe injury or drowning".[18]

See also

Footnotes

  1. ^ Sea Doo is the trade name for PWCs made by Bombardier, from Canada
  2. ^ US Coast Guard "Annual Boating Statistics, 2006". uscgboating.org
  3. ^ Sampsell, Michael M.; et al. (2002). Boat Accident Reconstruction and Litigation. Lawyers & Judges Publishing. pp. 63–4. ISBN 0913875791. 
  4. ^ "Personal Watercraft". Massachusetts Institute of Technology. http://web.mit.edu/invent/iow/watercraft.html. 
  5. ^ a b Action, Johnny; Adams, Tania; Packer, Matt (2006). Origin of Everyday Things. Sterling Publishing. pp. 124. ISBN 1402743025. 
  6. ^ "Jet Ski Evolution". boats.com. http://www.boats.com/news-reviews/article/jet-ski-evolution. Retrieved 2011-05-19. 
  7. ^ "Backgrounder: John Moffatt" (PDF). American Power Boat Association. October 17, 2007. http://www.apbaracing.com/071018_news_moffatt_background.pdf. Retrieved 2008-02-08. 
  8. ^ Jim Stingl, "Have fun on your watercraft, butt beware," Milwaukee Journal Sentinel, 28 June 2000, 1.
  9. ^ Roy Scott Hickman and Michael M. Sampsel, Boat Accident Reconstruction and Litigation (Tucson: Lawyers & Judges Publishing Company, 2003), 78.
  10. ^ See Romano RL. Burgess EM. Medical Implications of Water-skiing, Clin Orthop, 22: 140-145 (1962).; David Pfanner, Salpingitis and Water Skiing FRCS The Medical Journal of Australia, 2/1964.; Moore A. T.: Water-skiing in Symposium on Injury in sport. Edited by Armstrong JR, Tucker WE; London Staples, 1964; McCarthy GF. Hazards of water-skiing. Med J Aust. 1969; 1:481;David C. Morton, Gynecological Complications of Water Skiing M.R.C.O.G. Gosford District Hospital, New south Wales Medical Journal of Australia, June 20, 1970. The first waterski reports of this kind of injury appeared in the early 1960s and continue today. Prior to that time there were no reported injuries of this type. Similar reports of this kind of injury have occurred at water slide parks and other similar facilities. Once again, the occurrence rate for this kind of injury appears to be very low.
  11. ^ Bernard Descottes, Fouzi Lachachi, Issifou Moumouni, Sylvaine Durand-Fontanier, and Ramy Geballa, "Case Report: Rectal Injury Caused by Personal Watercraft Accident," Diseases of the Colon and Rectum 46, no. 7 (June 2003): 971-972. The 16-year-old patient described in this case report was deceased. The autopsy revealed that the primary cause of death was toxic shock syndrome caused by the rectal tear.
  12. ^ David P. Parsons, Harry A. Kahn, John T. Isler and Richard P. Billingham, "Case Report: Rectal Injury Caused by Personal Watercraft Accident," Diseases of the Colon and Rectum 42, no. 7 (July 1999): 959-960. The patient described in this case report survived.
  13. ^ Ford v. Polaris Industries, Inc., 139 Cal. App. 4th 755 (2006). The plaintiff survived due to the heroic efforts of UC Davis Medical Center personnel (the court noted that she required "massive resuscitation") but was permanently disabled by her injuries; for example, she has no bowel control.
  14. ^ NTSB Personal Watercraft Safety Study (1998)
  15. ^ Am Surg. 2002 Jul;68(7):624-7.Pattern of injury from personal watercraft. Haan JM, Kramer ME, Scalea TM; J Trauma. 2004 Dec;57(6):1308-10.Thoracolumbar fractures associated with the use of personal watercraft.Carmel A, Drescher MJ, Leitner Y, Gepstein R.
  16. ^ 2001 Joint USCG/Industry Label Project, Injury Control and Safety Promotion, 2001, Vol. 8, No. 2, pp71-81; Labeling for Personal Watercraft.
  17. ^ JT1100-G1 Owner's Manual, page 53-54
  18. ^ 2001 Joint USCG/Industry Label Project, Injury Control and Safety Promotion, 2001, Vol. 8, No. 2, pp71-81; Labeling for Personal Watercraft

References

Gasoline Boats and Personal Watercraft. Retrieved on May 4, 2005.

External links